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1 Overview

The original software package TRLan, [TRLan User Guide], page 24, implements the thick-
restart Lanczos method, [Wu and Simon 2001], page 24, for computing eigenvalues λ and
their corresponding eigenvectors v of a symmetric matrix A:

Av = λv.

Its effectiveness in computing the exterior eigenvalues of a large matrix has been demon-
strated, [LBNL-42982], page 24. However, its performance strongly depends on the user-
specified dimension of a projection subspace. If the dimension is too small, TRLan suffers
from slow convergence. If it is too large, the computational and memory costs become
expensive. Therefore, to balance the solution convergence and costs, users must select an
appropriate subspace dimension for each eigenvalue problem at hand. To free users from this
difficult task, nu–TRLan, [LNBL-1059E], page 23, adjusts the subspace dimension at every
restart such that optimal performance in solving the eigenvalue problem is automatically
obtained. This document provides a user guide to the nu–TRLan software package.

The original TRLan software package was implemented in Fortran 90 to solve symmetric
eigenvalue problems using static projection subspace dimensions. nu–TRLan was developed
in C and extended to solve Hermitian eigenvalue problems. It can be invoked using either
a static or an adaptive subspace dimension. In order to simplify its use for TRLan users,
nu–TRLan has interfaces and features similar to those of TRLan:
• Solver parameters are stored in a single data structure called trl_info, Chapter 4

[trl_info structure], page 7.
• Most of the numerical computations are performed by BLAS, [BLAS], page 23, and

LAPACK, [LAPACK], page 23, subroutines, which allow nu–TRLan to achieve optimized
performance across a wide range of platforms.

• To solve eigenvalue problems on distributed memory systems, the message passing
interface (MPI), [MPI forum], page 23, is used.

The rest of this document is organized as follows. In Chapter 2 [Installation], page 2, we
provide an installation guide of the nu–TRLan software package. In Chapter 3 [Example],
page 3, we present a simple nu–TRLan example program. In Chapter 4 [trl_info struc-
ture], page 7, and Chapter 5 [trlan subroutine], page 14, we describe the solver parameters
and interfaces in detail. In Chapter 6 [Solver parameters], page 21, we discuss the selec-
tion of the user-specified parameters. In Chapter 7 [Contact information], page 22, we give
the acknowledgements and contact information of the authors. In Chapter 8 [References],
page 23, we list reference to related works.
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2 Installation

All the source codes of the nu–TRLan software package are compressed into one file named
nutrlan.tar.gz, which can be downloaded at

https://codeforge.lbl.gov/projects/trlan/.
After the source code is downloaded, it must be unpacked by invoking the following com-
mand:

% tar -xzf nutrlan.tar.gz

If your tar program does not support the flag -z, then the following commands can be
used:

% gunzip -d nutrlan.tar.gz
% tar -xf nutrlan.tar

This will unpack the source code under the nu–TRLan top level directory ‘nutrlan’.
To install the package, you need a C compiler and the BLAS/LAPACK libraries. If the

BLAS/LAPACK libraries that are optimized for your machine are not available, the required
subroutines (not optimized for your machine) are included in the package under the subdi-
rectory ‘CBLAS’. On a distributed memory machine, MPI is also required. The compiler and
locations of these libraries on your machine must be specified in the file named ‘Make.inc’,
which can be found under the top directory ‘nutrlan’.

After ‘Make.inc’ is modified to reflect the environments on your machine, nu–TRLan
can be compiled into either the sequential or the parallel version of the library libtrlan.a
using their respective commands from the top directory ‘nutrlan’:

% make lib
or

% make plib

A number of example programs that use nu–TRLan are provided in the sub-directory
‘examples’. If file_name is the file name of the example that you want to test, then it can
be compiled by:

% make file_name

For example, to compile the example program ‘psimple’, [simple example], page 3, invoke
the following command:

% make psimple

This will generate an executable called ‘psimple’, which can then be run as:
% mpirun -np 2 ./psimple

For more information on the example programs, see the ‘README’ file under the top directory
‘nutrlan’, or see Chapter 3 [Example program], page 3.

For further questions or comments or if you encounter errors in the installation procedure,
please feel free to contact the authors by emailing to ic.yamazaki@gmail.com (Ichitaro
Yamazaki), kwu@lbl.gov (Kesheng Wu), or hdsimon@lbl.gov (Horst Simon).

https://codeforge.lbl.gov/projects/trlan/
mailto:ic.yamazaki@gmail.com
mailto:kwu@lbl.gov
mailto:hdsimon@lbl.gov
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3 Example program

In this chapter, we provide a simple example that uses the nu–TRLan software package.
The example computes the smallest 10 eigenvalues and corresponding eigenvectors of a
1000× 1000 diagonal matrix, diag(1, 2, . . . , 1000).

A user of nu–TRLan is required to provide a subroutine that computes the matrix-vector
multiply with the coefficient matrix of the eigenvalue problem. This subroutine must have
the same interface as the following subroutine that computes the matrix-vector multiply
with the diagonal matrix diag(1, 2, . . . , 1000):

void diag_op(int *pnrow, int *pncol, double *xin, int *pldx,
double *yout, int *pldy)

{
int i, j, ioff, joff, doff, nrow, ncol, ldx, ldy;
nrow = *pnrow; ncol = *pncol;
ldx = *pldx; ldy = *pldy;
MPI_Comm_rank(MPI_COMM_WORLD, &i);
doff = nrow*i;
for( j=0; j<ncol; j++ )
{

ioff = j*ldx;
joff = j*ldy;
for( i=0; i<nrow; i++ )

yout[joff+i] = (doff+i+1)*xin[ioff+i];
}

}

This subroutine applies the matrix multiply to the vectors stored in xin and returns the
results in yout. Beside these two vectors in the arguments, pnrow specifies the numbers of
rows, and pncol is the number of columns, of the vectors stored in xin. Furthermore, pldx
and pldy are the leading dimensions of xin and yout, respectively. More information on
the matrix-vector multiply can be found in Section 5.2 [Matrix-vector multiply], page 14.

Using this matrix-vector multiply subroutine, the following program solves the example
eigenvalue problem:

int main()
{
static const int nrow=1000, lohi=-1, ned=10, maxlan=100, mev=10;
static const double tol=1.4901/100000000;
int i, check, lwrk=maxlan*(maxlan+10);
double eval[mev], evec[mev*nrow], exact[mev];
double res[lwrk], wrk[lwrk];
trl_info info;
if( MPI_Init(0,NULL) != MPI_SUCCESS ) {

printf( "Failed to initialize MPI.\r\n" );
return 0;

}
trl_init_info(&info, nrow, maxlan, lohi, ned, tol, 1, 2000, -1);
for( i=0; i<mev; i++ ) eval[i] = 0.0;
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for( i=0; i<nrow; i++ ) evec[i] = 1.0;
trlan(diag_op, &info, nrow, mev, eval, evec, nrow, lwrk, res);
trl_print_info(&info, 2*nrow);
for( i=0; i<mev; i++ ) exact[i] = i+1;
if( info.nec > 0 )

i = info.nec;
else

i = mev - 1;
trl_check_ritz(diag_op, &info, nrow, i, evec, nrow, eval,

&check, res, exact, i, wrk);
MPI_Finalize();

}

The above example program first calls the subroutine trl_init_info to initialize the
structure info of type trl_info. The interface to the subroutine is:

void trl_init_info(
trl_info *info, // pointer to the structure.
int nrow, // local problem size.
int maxlan, // max. number of basis vectors.
int lohi, // -1, compute smallest eigenvalues.
int ned, // number of desired eigenvalues.
double tol, // required solution accuracy.
int restart, // restart scheme.
int mxmv, // max. number of matrix operations.
int mpicom // -1, MPI_COMM_WORLD is duplicated.
)

This subroutine trl_init_info must be called before any other nu–TRLan subroutines.
For more information on the structure trl_info and the subroutine trl_init_info, see
Section 4.6 [trl_info structure], page 12, and Section 4.1 [trl_init_info subroutine],
page 7, respectively.

The example program then invokes the main computational subroutine trlan that com-
putes the eigenvalues and eigenvectors. The interface to this subroutine is as follows:

void trlan(
void (*op)(int*,int*,double*,int*,double*,int*),

// matrix-vector multiply subroutine.
trl_info *info, // structure storing parameters.
int nrow, // local dimension of the problem.
int mev, // size of eval.
double *eval, // storage of eigenvalues.
double *evec, // storage of eigenvectors.
int lde, // leading dimension of evec.
int lwrk, // size of wrk.
double *wrk // workspace.
)

In Chapter 5 [trlan interface], page 14, the interface to the subroutine trlan is described
in detail.
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After the completion of the subroutine trlan, an execution summary of trlan is printed
by calling the subroutine trl_print_info. The interface to the subroutine is:

void trl_print_info(
trl_info * info, // structure storing parameters.
int mvflop // flops per matrix operation.
)

The argument info is the pointer to the data structure storing the information on the
current eigenvalue problem, and mvflop is the required number of floating-point operations
(flops) per matrix-vector multiply. In this example, the matrix-vector multiply subroutine
diag_op performs about 2×nrow flops. This information is then used to compute the total
number of flops required to solve the eigenvalue problem. Here is an output for this example:

Tue Oct 7 15:25:14 2008

TRLAN execution summary (exit status = 0) on PE 0

Number of SMALLEST eigenpairs 10 (computed) 10 (wanted)

Times the operator is applied: 587 (MAX: 2000 )

Problem size: 1000 (PE: 0) 2000 (Global)

Convergence tolerance: 1.490e-08 (rel) 2.980e-05 (abs)

Maximum basis size: 100

Restarting scheme: 7

Number of re-orthogonalizations: 587

Number of (re)start loops: 35

Number of MPI processes: 2

Number of eigenpairs locked: 3

time in OP: 0.0000e+00 sec

Re-Orthogonalization:: 3.0000e-02 sec, 2.4765e+09 FLOP/S ( 7.4294e+07 FLOP)

Restarting:: 3.0000e-02 sec, 1.0173e+09 FLOP/S ( 3.0520e+07 FLOP)

TRLAN on this PE: 6.0000e-02 sec, 0.0000e+00 FLOP/S ( 0.0000e+00 FLOP)

-- Global summary --

Overall, MATVEC, Re-orth, Restart,

Time(ave) 6.5000e-02, 5.0000e-03, 3.0000e-02, 2.5000e-02

Rate(tot) 8.5557e+08, 1.7610e+08, 2.4765e+09, 1.2208e+09

Finally, the computed approximate eigenvalues are printed by the subroutine trl_
check_ritz, whose interface is:

void trl_check_ritz(
void (*op)(int*,int*,double*,int*,double*,int*),

// matrix-vector multiply subroutine.
trl_info *info, // structure storing parameters.
int nrow, // local problem size.
int ncol, // number of computed eigenvalues.
double *evec, // computed eigenvectors.
int ldevec, // leading dimension of evec.
double *eval, // computed eigenvalues.
int *check, // check for solution convergence.
double *res, // residual norms of the eigenpairs (optional)
double *exact, // exact eigenvalues (optional)
int lwrk, // size of wrk
double *wrk // workspace (optional)
)

The subroutine trl_check_ritz requires a workspace of size nrow+4×ncol. If the size
of wrk is smaller than required, an additional workspace is internally allocated. Note that
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the computed eigenvalues eval and eigenvectors evec, and their residual norms res in the
arguments of trl_check_ritz are returned by the subroutine trlan in the arguments eval,
evec, and wrk, respectively, see [trlan subroutine], page 4, and [Example program], page 3.
Here is an output of trl_check_ritz for the example problem:

TRL_CHECK_RITZ:

Ritz value res norm res diff est error diff w rq act. error

1.00000000000108 4.844e-13 -4.844e-13 2.347e-25 -1.085e-12 -1.085e-12

2.00000000000043 5.272e-13 -5.272e-13 2.779e-25 -4.174e-13 -4.281e-13

2.99999999999999 5.757e-13 -5.757e-13 3.314e-25 2.709e-14 7.105e-15

3.99999999999993 6.630e-13 -6.622e-13 4.396e-25 8.216e-14 7.327e-14

5.00000000000000 5.799e-13 -5.219e-13 3.363e-25 -1.066e-14 0.000e+00

6.00000000000003 3.326e-12 -5.271e-14 1.106e-23 -6.217e-14 -3.375e-14

6.99999999999996 1.596e-10 -1.901e-14 2.546e-20 -1.243e-14 4.352e-14

7.99999999999989 6.939e-09 -1.101e-13 4.815e-17 9.504e-14 1.146e-13

9.00000000000016 2.761e-07 -5.377e-14 7.621e-14 -1.847e-13 -1.563e-13

10.00000000000117 1.022e-05 -5.892e-14 1.044e-10 -1.865e-13 -1.169e-12

Among the printed information, res norm is the actual residual norms of the eigenpairs
(λ, v), i.e., ||Av − λv||2, and res diff is the difference between the actual residual norm
and the approximate residual norm res returned by trlan. est error is the estimated
error norms computed from the residual norms and approximate eigenvalues. diff w rq is
the difference between the computed eigenvalue λ and the value vTAv, which is commonly
referred to as the Rayleigh quotient, [Parlett 1998], page 23. Finally, if exact is provided
in the argument, act. error shows the actual error in the computed eigenvalues.

On return from the subroutine trl_check_ritz, the argument check indicates results
of internal solution convergence tests; res diff is less than 10−5, diff w rq is less than
nrow2×tol, and act. error is less than 10×nrow2×tol. If check= 0, this indicates all the
internal checks are satisfied.

The above example shows how to compute eigenvalues of a symmetric matrix using nu–
TRLan. For the solution of Hermitian eigenvalue problems, all the interfaces remain the
same, except that complex numbers are stored in variables of type trl_dcomplex, whose
format is compatible to that of the variable type COMPLEX of LAPACK. For example, the main
computational subroutine has the interface:

void ztrlan(
void (*op)(int*, int*, trl_dcomplex*, int*, trl_dcomplex*, int*),
trl_info * info, int nrow, int mev, double *eval,
trl_dcomplex * evec, int lde, trl_dcomplex * misc, int nmis,
double *dwrk, int ldwrk)

and the check_ritz subroutine has the interface:
ztrl_check_ritz(

void (*op)(int*, int*, trl_dcomplex*, int*, trl_dcomplex*, int *),
trl_info * info, int nrow, int ncol, trl_dcomplex * evec,
int ldevec, double *eval, int *check, double *res, double *exact,
int lwrk, trl_dcomplex * wrk)

A few examples that solve Hermitian eigenvalue problems using nu–TRLan are included
under the ‘examples’ directory. See the ‘README’ file in the top directory ‘nutrlan’ for
more information. For the rest of this user guide, we will focus on the solutions of the
symmetric eigenvalue problems. The extensions to the Hermitian problems are straight
forward.



nu–TRLan user guide ver. 1.0 7

4 trl info structure

To simplify the interfaces to nu–TRLan subroutines, all the required input parameters are
stored in the trl_info structure. These parameters stored in trl_info can be manipulated
through the following subroutines:
• trl_init_info initializes the parameters.
• trl_set_debug sets the monitored performance statistics.
• trl_set_iguess specifies the starting vector options.
• trl_set_checkpoint sets up the checkpoints.
• trl_print_info and trl_terse_info print the current parameters.

In this chapter, we will discuss these subroutines.

4.1 Initialization, trl_init_info

The subroutine trl_init_info initializes all the solver parameters and resets all the per-
formance counters. It must be called before any other nu–TRLan subroutines. Its interface
is

void trl_init_info(trl_info *info, int nrow, int maxlan,
int lohi, int ned, double tol,
int restart, int mxmv, int mpicom)

The arguments to the subroutine are:

info: pointer to the structure.
On entry, info points to the structure to be initialized. The structure stores
the solver parameters, some of which are specified by the rest of the arguments.
See Section 4.6 [trl_info structure], page 12, for more information on the
structure. On exit, info points to the initialized structure.

nrow: local problem size.
On a distributed memory machine, the basis vectors are distributed by rows
among the processes. The argument nrow specifies the number of rows of the
basis vectors that are owned by this process. nrow may vary from process to
process.

maxlan: maximum projection subspace dimension.
When a static restart scheme is used, the iteration is restarted after maxlan basis
vectors are computed. This determines the required workspace size and solution
convergence rate of trlan. See Section 5.3 [required workspace], page 15, for
more information on the workspace requirement. If an adaptive restart scheme
is used, maxlan specifies the upper-bound of the subspace dimension that is
adjusted at every restart. See [restart scheme], page 8, and Section 6.2 [Sub-
space dimension], page 21, for more information on the restart schemes and the
selection of the parameter maxlan.

lohi: type of desired eigenvalues.
lohi indicates which end of the spectrum to compute. The choices are to
compute either the smallest (lohi < 0) or the largest (lohi > 0) eigenvalues, or
whatever converges first (lohi = 0).
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ned: number of desired eigenvalues.
nu–TRLan tries to compute ned eigenpairs with the given parameters.

tol: required solution accuracy.
nu–TRLan computes approximate eigenvalues λ and their corresponding eigen-
vectors v of a symmetric or Hermitian matrix A. The relative residual norms
of the convergent approximate eigenpairs (λ, v) are guaranteed to be less than
tol, i.e., ‖Av − λv‖2 ≤ tol||A||2, where ||A||2 is approximated by the largest
absolute value of computed eigenvalues. If tol is a negative value, then it is set
to be its default value, which is the square root of the machine precision. For
example, on machines with 8-byte IEEE floating-point arithmetic, the default
value is 2−26.

restart: restart scheme.
restart can be either 1, 2, . . . , 8. If restart is less than 1 or greater than 8,
it is reset to be the default choice 7, which adaptively adjusts the projection
subspace dimension at every restart, [LNBL-1059E], page 23. See Section 6.1
[Restart scheme], page 21, for further discussion of this parameter.

maxmv: maximum number of matrix operations.
The purpose of maxmv is to terminate the program in case of stagnation. If
a negative value is provided, maxmv is set to be the default value ned×ntot,
where ntot is the global problem size, i.e., ntot is the sum of nrow over all
processors.

mpicom: MPI communicator
mpicom is used only on a distributed memory system. If a negative value is
provided, trl_init_info duplicates MPI_COMM_WORLD and uses the resulting
communicator for its internal communication operations.

4.2 Starting vector options, trl_set_iguess

To start the iteration, nu–TRLan either uses a user-supplied starting vector, generates an
arbitrary starting vector, or reads a set of checkpoint files. This initial guess option can be
set by the subroutine trl_set_iguess, whose interface is:

void trl_set_iguess(trl_info *info, int nec, int iguess,
int ncps, char *oldcpf)

with the following arguments:

info: structure to be updated.
The subroutine trl_init_info, [trl_init_info subroutine], page 7, must be
called to initialize the data structure before trl_set_iguess is called.

nec: number of convergent eigenvalues.
If nec is greater than zero, it specifies the number of the convergent approximate
eigenpairs stored in the arrays eval and evec that are the arguments to the
subroutine trlan, Chapter 5 [trlan subroutine], page 14. Specifically, the first
nec elements of the array eval contain the convergent approximate eigenvalues,
and the first nec columns of the array evec contain corresponding approximate
eigenvectors. This allows trlan to resume the computation of eigenvalues and
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eigenvectors from the previous runs of nu–TRLan. trlan can be restarted with
an arbitrary number of vectors. However, these vectors have to satisfy the
convergence criteria; see [tol], page 8. The subroutine trl_init_info sets
nec to be zero.

iguess: initial guess option.
iguess specifies the initial guess option;

>1: nu–TRLan reads checkpoint files and uses their contents to resume
the iteration. Checkpoint is explained in Section 4.3 [Checkpoint],
page 9.

1: The user supplies a starting vector. The vector is stored in the first
column of evec, which is an argument to the subroutine trlan.

0: nu–TRLan generates the starting vector, whose entries are all set
to be one.

<0: nu–TRLan generates the starting vector, and applies a random per-
turbation to it.

ncps: number of checkpoints.
If ncps is greater than zero, this indicates that the checkpoint files are provided.

oldcpf: leading portion of the checkpoint file name.
The name of the checkpoint file is formed by appending the MPI process rank to
oldcpf. On a sequential machine, the MPI process rank is zero. For example,
if oldcpf is ‘TRL_CHECKPOINT_’, the process with the MPI rank of 0 reads the
checkpoint file named ‘TRL_CHECKPOINT_0’.

4.3 Checkpoint, trl_set_checkpoint

A checkpoint saves a state of the eigen solver such that trlan can be resumed from a
previous run of trlan. All the necessary information to resume trlan is stored in checkpoint
files. The subroutine trl_set_iguess specifies whether existing checkpoint files are used
to resume the current iteration of trlan; see Section 4.2 [trl_set_iguess subroutine],
page 8. On the other hand, to specify whether new checkpoint files will be written during
the proceeding iterations, the following subroutine can be used:

void trl_set_checkpoint(trl_info *info, int cpflag, char *cpfile)

The arguments to this subroutine are:

info: structure to be updated.
The subroutine trl_init_info must be called before trl_set_checkpoint is
called.

cpflag: number of checkpoints.
If cflag is greater than zero, the checkpoint file is updated cpflag number of
times in the user-specified maximum number of iterations, maxmv, which is set
by the subroutine trlan; see Chapter 5 [trlan subroutine], page 14. Only the
most recent checkpoint will be available in the file. Each MPI process writes its
own checkpoint in binary at the end of a restart process. Because of this, these
checkpoint files can be read only on the same type of machines using the same
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number of MPI processes. If cpflag is less than or equal to zero, no checkpoint
files are written. trl_init_info sets cpflag to be zero.

cpfile: leading portion of the checkpoint file.
As with the checkpoint files used by the subroutine trl_set_iguess; see [trl_
set_iguess subroutine], page 8, the name of the checkpoint file is formed by
concatenating the MPI process rank at the end of cpfile. trl_init_info sets
cpfile to be ‘TRL_CHECKPOINT_’ by default.

4.4 Performance statistics, trl_set_debug

nu–TRLan allows a user to monitor the solution convergence. The information that can be
monitored include the elements of the projected tridiagonal matrix, current approximate
eigenvalues, their residual norms, and levels of the orthogonality among the basis vectors.
This information is written to a separate debug file by each MPI process. The name of
the file and how much information is monitored are controlled by the subroutine trl_set_
debug. The interface to this subroutine is:

void trl_set_debug(trl_info *info, int msglvl, char *filename)

Short descriptions of the arguments are as follow:

info: structure to be updated.
The subroutine trl_init_info must be called before trl_set_debug is called.

msglvl: message level.
This parameter controls how much information is monitored. With a larger
msglvl, more information is monitored, 0 ≤msglvl≤ 10. The subroutine trl_
init_info sets msglvl to be zero as the default value to indicate that nothing
is monitored.

filename: leading part of the debug file name.
As with the checkpoint files used by the subroutine trl_set_iguess; see [trl_
set_iguess subroutine], page 8, the debug file names are generated by con-
catenating filename with the MPI rank of this process.

4.5 Execution summary, trl_print_info and trl_terse_info

nu–TRLan includes the subroutine trl_print_info that allows a user to examine the
current state of the eigensolver. This is useful for testing the solution convergence at
the completion of the subroutine trlan; see Chapter 5 [trlan subroutine], page 14. The
interface to trl_print_info is:

void trl_print_info(trl_info *info, int mvflop)

with the arguments:

info: structure storing the current state.
The structure stores the information such as the number of desired and conver-
gent eigenvalues, number of matrix-vector multiply performed, and the CPU
time spent in each phases of trlan. See [trl_print_info output], page 5, for
an example of output.
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mvop: number of flops per matrix-vector multiply.
It indicates the number of floating-point operations (flops) performed by this
process during one matrix-vector multiply. This information is then used to
compute the total number of flops required to solve the eigenvalue problem. If
mvop is not given, the relevant fields are left blank in the output.

For an example of using trl_print_info, see Chapter 3 [Example program], page 3.

nu–TRLan also contains an additional subroutine, trl_terse_info, that prints a sum-
mary of the information stored in the trl_info structure. Its interface is:

void trl_terse_info(trl_info *info, FILE* ofp)

The arguments to the subroutine are:

info: pointer to the structure.
The structure contains the information on the current state of trlan.

ofp: a pointer to a file stream.
The subroutine trl_terse_info can output to any valid output file. This
is different from trl_print_info, whose output file is set by the subroutine
trl_set_debug; see Section 4.4 [trl_set_debug subroutine], page 10.

An example of output from this subroutine is:
MAXLAN: 100, Restart: 7, NED: - 10, NEC: 10

MATVEC: 587, Reorth: 587, Nloop: 35, Nlocked: 3

Ttotal: 0.060000, T_op: 0.000000, Torth: 0.030000, Tstart: 0.030000

The description of the printed information is as follows.

MAXLAN: user-specified maximum dimension of projection subspace. It is set by the
subroutine trl_init_info; see [trl_init_info subroutine], page 7.

Restart: restart scheme, 0, 1, . . . , 8. It is set by trl_init_info.

NED: number of desired eigenvalues. It also specifies at which end of the spectrum the
approximate eigenvalues were computed, i.e., at the largest (+), at the smallest
(-), or both ends of the spectrum (0). It is set by trl_init_info.

NEC: number of convergent eigenvalues.

MATVEC: number of the times that the matrix-vector multiply is applied.

Reorth: number of reorthogonalization, i.e., each time the Gram-Schmidt procedure is
called, this counter is incremented by one.

Nloop: number of outer iterations, i.e., number of restarts.

Nlocked: number of the approximate eigenpairs (λ, v) that are locked because their resid-
ual norms are small (||Av − λv||2 ≤ ε||A||2, where ε is the machine precision).

Ttotal: total time in seconds spent by nu–TRLan.

T_op: time in seconds spent performing the matrix-vector multiply.

Torth: time in seconds spent performing the reorthogonalizations.

Tstart: time in seconds spent in restart.
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Note that the subroutine trl_terse_info prints only the local information, i.e., the flops
performed and time spent by this processor, while trl_print_info also prints the global
summary information; see [trl_print_info output], page 5 for an output from trl_print_
info.

4.6 Member variables

As discussed earlier in this chapter, all the required solver parameters are stored in the
trl_info structure. We list below all the member variables of trl_info. The variables are
of type integer unless otherwise specified.

npes number of processors.

my_pe rank of the MPI process that owns this structure.

mpicom MPI communicator. See [mpicom], page 8

nloc local problem size. See [nrow], page 7

ntot global problem size, i.e., ntot is the sum of nrow over all processors.

lohi index to indicate which end of the spectrum to compute. See [lohi], page 7.

restart restart scheme. See Section 6.1 [Restart scheme], page 21

rfact factor used with the restart scheme 8 to adjust the projection subspace dimen-
sion. See Section 6.1 [Restart scheme], page 21.

ned number of desired eigenvalues. See [ned], page 7

nec number of convergent eigenvalues. See [tol], page 8.

locked number of locked eigenvalues. See [locked], page 11.

guess initial guess option. See Section 4.2 [trl_set_iguess subroutine], page 8.

tol required solution accuracy. tol is of type double. See [tol], page 8.

matvec number of times that the matrix-vector multiply was applied.

nloop number of outer-loop iterations or restarts.

north number of times that the Gram-Schmidt procedure was invoked to perform
reorthogonalization.

nrand number of times trlan generated random vectors in the attempt to recover
from an invariant subspace.

clk_rate clock rate of the machine. clk_rate is of type clock_t.

clk_max maximum clock ticks. clk_max is of type clock_t.

clk_tot, clk_op, clk_orth, and clk_res (of type clock_t);
tick_t, tick_o, tick_h, and tick_r (of type double):

time spent performing matrix-vector multiply (clk_op and tick_o), reorthog-
onalization (clk_orth and tick_h), and restart (clk_res and tick_r), and
the total time spent by trlan (clk_tot and tick_t). The four counters clk_
op, clk_orth, clk_res, and clk_tot are used to accumulate the clock ticks
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returned from the intrinsic subroutine clock. Once the clock ticks become too
large to store in the integer counters, their values are added to their corre-
sponding counters of type double, and the integer counters are reset to be zero.
Specifically, when the value of the integer counter decreases with the addition
of new tick counts, then it is assumed to be too large to store in the integer
counter. We also assume that clock wraps around when the tick returned by
clock is smaller than the previously-recorded tick.

flop, flop_h, and flop_r;
rflp, rflp_h, and rflp_r (of type double):

numbers of flops performed for reorthogonalization (flop_h and rflp_h) and
for restart (flop_r and rflp_r), and the total flops (flop and rflp) excluding
those used by matrix-vector multiply, i.e., the matrix-vector multiply subroutine
is supplied by the user; see [mvop], page 10. When the numbers of flops become
too large to store in the integer counters, they are added to their corresponding
counters of type double, and the integer counters are reset to be zero (see the
description of the counters used to store clock ticks for more information).

tmv;
crat, tres, and trgt (of type double):

convergence factor of the approximate eigenvalues. The variable crat
is the convergence factor over the previous restart-loop, i.e., crat
= elog(||rmatvec||2/||rtmv||2)/(matvec−tmv), where ||ri||2 is the residual norm of the
current target eigenvalue trgt after i matrix-vector multiplies, and matvec is
the current number of times that the matrix-vector multiply is applied. The
residual norm of the target at the previous restart, ||rtmv||2, is stored in tres,
i.e., tmv is the number of matrix-vector multiplies at the previous restart.
After crat is updated, trgt is set to be the next target eigenvalue, tres is set
to be the current residual norm of the target, and tmv is set to be matvec.

anrm (of type double):
estimate norm of the coefficient matrix. This is the largest absolute value of
approximate eigenvalues computed. This value is primarily used in the conver-
gence test, see [tol], page 8.

stat: current state of nu–TRLan. In Section 5.4 [Error handling], page 16, this is
described in detail.
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5 trlan subroutine

In this section, we describe the main subroutine trlan that computes the approximate
eigenpairs of symmetric matrices.

5.1 Interface

The main computation kernel of the nu–TRLan package is the subroutine trlan. The
interface to the subroutine is:

void trlan(void (*op)(int*,int*,double*,int*,double*,int*),
trl_info *info, int nrow, int mev, double *eval,
double *evec, int lde, int lwrk, double *wrk)

Most of the arguments of this subroutine are explained in Chapter 3 [Example program],
page 3. For completeness, we list them here.

op: matrix-vector multiply subroutine. In Section 5.2 [Matrix-vector multiply],
page 14, we discuss the interface to this subroutine.

info: pointer to the structure of type trl_info. See Chapter 4 [trl_info structure],
page 7, for more details.

nrow: number of rows owned by this process. See [nrow], page 7, in the arguments of
the trl_init_info stubroutine for more information.

mev: number of elements in array eval and number of columns in array evec, i.e.,
the maximum number of eigenpairs that can be stored in eval and evec.

eval: array used to store the computed approximate eigenvalues.

evec: array used to store the computed approximate eigenvectors.

lde: leading dimension of array evec. lde is expected to be at least as large as nrow.

lwrk: number of elements in the workspace wrk. If the user does not supply any
workspace, it must be set to be a non-positive integer.

wrk: optional workspace. If sufficient amount of workspace is not provided, addi-
tional workspace is internally allocated. See Section 5.3 [Workspace], page 15
for more details. If lwrk is greater than or equal to nec, trlan will return
the residual norms of the converged eigenpairs in the first nec elements of wrk,
where nec is the number of the convergent eigenpairs.

Recall that when nec in the arguments to the subroutine trl_set_iguess is greater than
zero, the first nec elements of eval must contain the convergent eigenvalues, and the first
nec columns of evec must contain the corresponding eigenvectors. See [trl_set_iguess
subroutine], page 8 for more information.

5.2 Matrix-vector multiply

One of the arguments to the subroutine trlan is the pointer to the subroutine that computes
the matrix-vector multiply with the coefficient matrix of the eigenvalue problem. This
subroutine must have the following interface:
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void op(int *pnrow, int *pncol, double *xin, int *pldx,
double *yout, int *pldy)

The arguments to the subroutine are:

pnrow: local problem size. See [nrow], page 14, in the arguments of the trlan stubrou-
tine for more information.

pncol: number of columns in the arrays xin and yout.

xin: array storing the input vectors to be multiplied.

pldx: leading dimension of the array xin.

yout: array to store the results of the matrix-vector multiply.

pldy: leading dimension of the array yout.

An example of the matrix-vector multiply is presented in Chapter 3 [Example program],
page 3. There are a number of packages that can be referenced when implementing your
own matrix-vector multiply subroutine. We provide below a short list of such packages:

ACTS http://acts.nersc.gov/

NETLIB http://www.netlib.org

PETSc http://www.mcs.anl.gov/petsc/

SPARSKIT http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

5.3 Workspace

Inside the subroutine trlan, there are three workspaces evec, base, and misc. Their usages
are as follows:

1. The user always provides the array evec as an argument to the subroutine trlan.
The size of evec is lde×mev. evec is used to input the initial vectors and output
the approximate eigenvectors. See Chapter 5 [trlan subroutine], page 14, for more
information.

2. The array base is used to store the basis vectors when there is no more space in evec.
Given the maximum basis size maxlan, the size of base is (maxlan + 1 - mev)×nrow.
If wrk of a sufficient size is provided to the subroutine trlan, it is used to store base.

3. The array misc is used as internal workspaces. For example, it is used to store the
projected matrix, the eigenvalues, and eigenvectors of the projected matrix, and is used
as workspace for lower-level subroutines, including those from LAPACK/BLAS libraries.
Its size should be at least maxlan×(maxlan +10). Some subroutines might run faster
with a larger misc. If wrk of a sufficient size is provided, it is used to store misc.

If the user provides a workspace wrk to trlan, then its size lwrk is checked to see if misc
or base or both can fit in the workspace. If additional workspaced is required, a workspace
of appropriate size is internally allocated.

http://acts.nersc.gov/
http://www.netlib.org
http://www.mcs.anl.gov/petsc/
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
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5.4 Error handling

This section lists error codes that can be returned by the subroutine trlan; see [stat],
page 13 or [trl_print_info output], page 5. We also discusses possible remedies to the
errors.

0 This indicates a successful completion of trlan. However, it is possible that
some of the desired eigenpairs have not yet converged. Check nec (the number
of convergent eigenpairs) to see how many desired eigenpairs have converged;
see Section 4.5 [trl_print_info subroutine], page 10, or [nec], page 12, for
more information.
If some of the desired eigenpairs have not converged, the possible solutions are:
• If checkpoint files were written, resume the iteration by calling trlan with

the checkpoint files; see Section 4.3 [Checkpoint], page 9, for more details.
• If the checkpoint files were not written, but the approximate eigenvectors

are available, then make a linear combination of the eigenvectors and rerun
trlan with the resulting vector as the starting vector; see [trl_set_iguess
subroutine], page 8. In addition, generate checkpoint files for future use;
see Section 4.3 [Checkpoint], page 9.

• Increase the maximum basis size (maxlan) and rerun trlan; see Section 4.1
[trl_init_info subroutine], page 7.

• Increase the maximum number of iterations allowed (maxmv) and rerun
trlan, see Section 4.1 [trl_init_info subroutine], page 7.

• Use a different restart scheme; see Section 6.1 [Restart scheme], page 21.

-1 The value of nrow in the argument to the subroutine trlan does not match with
the local problem size nloc stored in the trl_info structure, [nloc], page 12.
Solution: Make sure that the subroutine trl_init_info is called before
trlan, and the arguments to both subroutines are correct for the intended
eigenvalue problem; see Section 4.1 [trl_init_info subroutine], page 7, and
Chapter 5 [trlan subroutine], page 14.

-2 In the arguments to trlan, the leading dimension lde of the array evec is
smaller than the local problem size nloc of the trl_info structure.
Solution: Make sure that the subroutine trl_init_info is called before
trlan, and the arguments to both subroutines are correct for the intended
eigenvalue problem; see Section 4.1 [trl_init_info subroutine], page 7. Allo-
cate the array evec with the leading dimension larger or equal to nrow specified
by the trl_init_info subroutine.

-3 In the argument to trlan, the array size mev of eval is too small to store the
desired eigenvalues.
Solution: Increase the size of array eval and number of columns in evec,
see Chapter 5 [trlan subroutine], page 14. Check the number ned of desired
eigenvalues in the arguments to the trl_init_info subroutine; see [trl_init_
info subroutine], page 7

-4 nu–TRLan failed to allocate workspace of size maxlan×(maxlan+10), which is
used to store the projected matrix.
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Solution:
• Reduce the size of maxlan; see Chapter 5 [trlan subroutine], page 14, and

Section 6.2 [Maximum projection dimension], page 21.
• If additional workspace is available, give nu–TRLan more workspace.
• If possible, increase the swap file/partition size.

-5 nu–TRLan failed to allocate memory to store the Lanczos basis vectors. The
size of the required workspace is (maxlan + 1 - mev)×nrow.
Solution: See solutions for error code -4.

-11 nu–TRLan does not have enough workspace to perform the Gram-Schmidt pro-
cedure for reorthogonalization. This happens when the lower-level subroutine
trlanczos is directly called with an insufficient workspace.
Solution: Increase the workspace to trlanczos.

-12 nu–TRLan does not have enough workspace to compute eigenvalues of a sym-
metric tridiagonal projected matrix. This happens when the lower-level sub-
routine trlanczos is directory called with an insufficient workspace.
Solution: Increase the workspace to trlanczos.

-101 The reorthogonalization subroutine does not have enough workspace. This
happens when the lower-level subroutine trl_orth is directly called with an
insufficient workspace.
Solution: Increase the workspace to trl_orth.

-102 The computation of the residual norm overflowed or underflowed.
Solution:
• This can happen when the workspace is not as large as the user indicated.

Check the sizes of workspaces including the space to store the eigenvalues
and eigenvectors; see Chapter 5 [trlan subroutine], page 14.

• If the initial number of convergent eigenvalues (nec) is not zero, make sure
that the convergent eigenvalues are stored in the first nec elements of eval,
and the corresponding eigenvalues are stored in the first nec columns of
evec; see [trl_set_iguess subroutine], page 8.

-112 nu–TRLan failed to generate an orthogonal transformation to reduce the pro-
jected matrix into a tridiagonal matrix, i.e., LAPACK subroutine dsytrd/ssytrd
failed.
Solution: Make sure LAPACK is installed correctly. See suggestions for error
-102.

-113 nu–TRLan failed to apply the orthogonal transformation to reduce the pro-
jected matrix into a tridiagonal matrix, i.e., LAPACK subroutine dorgtr/sorgtr
failed.
Solution: See solutions to error -112.

-121 There was not sufficient workspace to compute the eigenvalues of a tridiagonal
matrix. This error occurs when the actual size of workspace wrk passed to
trlan is not lwrk; see Chapter 5 [trlan subroutine], page 14.
Solution: See solutions to error -102.
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-122 nu–TRLan failed to compute the eigenvalues of a tridiagonal matrix, i.e.,
LAPACK subroutine dstqrb failed.
Solution: See solutions to error -112.

-131 There was not sufficient workspace to compute the eigenvectors of a tridiagonal
matrix. This error occurs when a workspace of incorrect size is provided.
Solution: See solution to error -102.

-132 nu–TRLan failed to compute the eigenvectors of a tridiagonal matrix. Specifi-
cally, LAPACK subroutine dstein/sstein failed.
Solution: See solutions to error -112.

-141 There was not sufficient workspace to compute the eigenvectors of a tridiagonal
matrix.
Solution: See solutions to error -102.

-142 nu–TRLan failed to compute the eigenvalues of a tridiagonal matrix, i.e., the
LAPACK subroutine dsyev/ssyev failed.
Solution: See solution to error -112.

-143/144 nu–TRLan could not match the computed eigenvalues selected to be saved with
the eigenvalues found by dsyev/ssyev.
Solution: See solutions to error -112.

-201 The Gram-Schmidt procedure was called with an insufficient workspace. This
happens when the lower-level subroutine trl_cgs is directly called.
Solution: Increase the workspace size for trl_cgs. If you did not call trl_cgs
directly, make sure workspace size lwrk matches the actual size of wrk when
calling trlan.

-202/203 The Gram-Schmidt process failed to orthogonalize a new vector against the
previous basis vectors. This indicates two possible sources of the problem:
either the previous basis vectors are not orthogonal, or the newly-generated
random vector belongs to the space spanned by the previous basis vectors.
Solution: Initialize each process with a different random number seed. If this
does not fix the problem, see the solutions to error -102.

-204 The vector norm after orthogonalization is not a valid floating-point number.
Solution: See solutions to error -102.

-211 The leading dimension of the array evec in the argument to trlan is not large
enough to store the vectors in a checkpoint file.
Solution: Make sure the checkpoint file is for the same problem and are
generated on the same type of machine using the same number of processors;
see Section 4.3 [Checkpoint], page 9.

-212 A checkpoint file could not be opened for reading.
Solution: Make sure the checkpoint file exists; see Section 4.3 [Checkpoint],
page 9 or solutions for -211.
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-213 The array size stored in a checkpoint file is different from that specified by the
user.
Solution: See solutions for -211.

-214 The number of the vectors stored in a checkpoint file is greater than maxlan.
Solution: Increase maxlan in the argument to the subroutine trlan; see
Chapter 5 [trlan subroutine], page 14.

-215 An error was encountered while reading a checkpoint file.
Solution: See solutions for -211.

-216 An error was encountered while closing a checkpoint file.
Solution: This error can be ignored in many cases. Consult your system
administrator.

-221 A checkpoint file could not be opened for writing.
Solution: Make sure the checkpoint file is not being used for other tasks, and
that you have permission to write files in the directory where the program is
running.

-222 An error was encountered while writing a checkpoint file.
Solution: Make sure there is enough space on the disk to store the checkpoint
file.

-223 An error was encountered while closing a checkpoint file.
Solution: This error can be ignored in many cases. Consult your system
administrator.

For further information, please feel free to contact the authors; see Chapter 7 [Contact
information], page 22.

5.5 Fortran interface

To provide an interface for Fortran programs, nu–TRLan includes the Fortran module
trlan_info, which stores the same information stored in the C structure trl_info; see
Section 4.6 [trl_info structure], page 12. This Fortran interface can be compiled by
invoking the following command from the top directory ‘nutrlan’:

% make ftrlan

This will generate the module trlan_info under the sub-directory ‘FORTRAN’.
There are a couple of Fortran examples using nu–TRLan included under the

sub-directory ‘example’. Here, we present a simple Fortran example program whose C
version is presented in Chapter 3 [Example program], page 3:

Program psimple
Use trlan_info
Implicit None
include ’mpif.h’
Integer, Parameter :: nrow=1000, lohi=-1, mev=10,
+ ned=10, maxlan=100
Integer i, check, restart, lwrk, ierr
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Real(8) :: eval(mev), evec(nrow, mev), exact(mev)
Real(8), DIMENSION(:), ALLOCATABLE :: res, wrk
Type(trlan_info_t) :: info
External diag_op
Call Mpi_init(ierr)
lwrk = maxlan*(maxlan+10)
ALLOCATE( res(lwrk) )
ALLOCATE( wrk(lwrk) )
Call trl_init_info(info,%VAL(nrow),%VAL(maxlan),%VAL(lohi),
+ %VAL(ned),%VAL(1.4901D-8),%VAL(restart),%VAL(2000),
+ %VAL(-1))
eval(1:mev) = 0.0D0
evec(1:nrow,1) = 1.0D0
Call trlan(diag_op, info, %VAL(nrow), %VAL(mev), eval, evec,
+ %VAL(nrow), %VAL(lwrk), res )
Call trl_print_info(info, %VAL(3*nrow))
Do i = 1, mev

exact(i) = i
End Do
If (info%nec.Gt.0) Then

i = info%nec
Else

i = mev - 1
End If
Call trl_check_ritz(diag_op, info, %VAL(nrow),
+ %VAL(i),evec(:,1:i),%val(nrow),eval(1:i),
+ check, res, exact, %val(lwrk), wrk )
DEALLOCATE( res,wrk )
Call mpi_finalize(ierr)
End Program psimple

This example program can be compiled using the following command from the ‘example’
sub-directory:

% make fpsimple

This will generate an executable called ‘fpsimple’, which can then be run as
% mpirun -np 2 ./fpsimple

For more information on Fortran example programs, see the ‘README’ file under the top
directory ‘nutrlan’.
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6 Solver parameters

The performance of nu–TRLan depends on a few user-specified parameters; see Chapter 4
[trl_info structure], page 7. Optimal values of the parameters vary with the eigenvalue
problem and the target machine. In this chapter, we will discuss the selection of these
parameters.

6.1 Restart scheme

Effective restart schemes for the Lanczos method are still active researches area. nu–TRLan
implements the same six restart schemes that are implemented in the original TRLan soft-
ware package. For information on these restart schemes, see [TRLan User Guide], page 24.
In addition to these six schemes, nu–TRLan implements restart schemes 7 and 8. The ad-
vantage of using these two additional restart schemes is that the dimension of the projection
subspace is adjusted at every restart. See [LNBL-1059E], page 23, for more information on
restart scheme 7. Restart scheme 8 is a modification of scheme 7, which sets the maximum
dimension of the next projection subspace to be k×rfact, where k is the number of vectors
kept at the restart, see [rfact], page 12. The default restart scheme is 7.

6.2 Maximum projection dimension

If restart scheme 7 or 8 is used, the dimension of the projection subspace is adjusted at
every restart. Hence, the maximum basis size maxlan (see [trl_init_info subroutine],
page 7) should be set to be the maximum number of vectors that can be stored in the
available memory space on the machine. When the static subspace dimension is used, the
selection of optimal basis size is a difficult task. See [TRLan User Guide], page 24 for some
recommendations.

6.3 Solution accuracy

In nu–TRLan, an approximate eigenpair (λ, v) is said to be converged when
||Av − λv||2 <tol||A||2, where tol is a user-specified solution accuracy; see [trl_init_
info subroutine], page 7 When tol is set to be 10−k, k digits of accuracy is typically
achieved by the convergent eigenpairs.
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